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PREFACE
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I. INTRODUCTION

In continuous diffusion-type cold-reaction HF chemical lasers being
investigated, H, is diffused into supersonic jets that contain F and a diluent
such as He.l Analytical studies of these devices have assumed that the F/He
jets are generated by two-dimensicnal nozzles.z_5 It is of interest to consider
configufations in which axisymmetric nozzles are used because these may
permit improved laser performance. Hence, the two-dimensional chemical
laser model of Ref. 4 is generalized here to include axisymmetric flow.
Saturated laser output power is determined for both laminar and turbulent
mixing. The performance of chemical lasers with two-dimensional and
axisymmetric nozzles is then compared. Nozzle wall viscous effects are

neglected.

1D J. Spencer, H. Mirels, and D. A. Durran, '""Performance of CW HF |
Chemncal Laser with N, or He Diluent,' J. Appl. Phys. 43 (3), 1151 (1972).

R Hofland and H. Mtrels. "Flame Sheet Analyses of CW Diffusion-Type
Chemxcal Lasers, 1. Uncoupled Radiation," AIAA J. 10 (4), 420 (1972).

R Hofland and H. Mirels, '""Flame Sheet Analyses of CW Diffusion-Type
Chemical Lasers, 1I. Coupled Radiation, ' AIAA J. 10 (10), 1271 (1972).

“4. Mirels, R. Hofland, and W. S. King, "Simplified Model of CW Diffusion-
. Type Chemical Lasers,' AIAA J. 11(2), 156 (1973). !

5J. E. Broadwell, '"Effect of Mixing Rate on HF Chemical Laser Perfor-
mance, ' Appl. Opt. 13 (4), 962 (1974).
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ITI. ANALYSIS

We consider both axisymmetric and two-dimensional F/He nozzles.
These are illustrated in Fig. 1. HZ is added along the perimeter of the

axisymmetric nozzle and along the sides of the two-dimensional nozzle.

In the simplified model of Ref. 4, it is assumed that the reactants are
premixed. However, the reaction does not begin until the reactants reach a
prescribed '"flame sheet' location, which is denoted by re = rf(x) in Fig. 2.
Unless otherwise specified, the notation herein is the same as in Ref. 4. We
consider a saturated laser wherein I +=, g--0, and the output power per
unit volume gl remains finite. The variation of output power, with stream-
wise distance, for the stream tube that enters the flame sheet at (xo. ro) is,
from Eq. (9b) of Ref. 4,

-kf(x-xo)/u

2B gl= (1+k,)e 1 (1)

okcd[F]O

Let P denote the net laser output power generated up to station x per
half nozzle of unit height and per nozzle for two-dimensional and axisym-
metric flows, respectively. The value of dP/dx is found by integrating the

contribution of all the reacted stream tubes between r = rf(x) and r - w. Thus

w
%5 = (Zw)Jf gl rd dr (2a)
r o(x)

where j = 0, 1 for the two-dimensional and axisymmetric nozzles, repec-

tively. LetR = rf(x)/w and Ro = rf(xo)/w.

-7-
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Exit Geometry for Axisymmetric and Two-Dimensional
F/He Nozzles with Characteristic Diffusion Distance w
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Also, introduce

= 2P
P = - -
eu[F]o o w1+']

(2b)

where P is the ratio of P to the output power that would be obtained if one
photon is generated for each pair of initial F atoms. (The latter output
power occurs in a saturated premixed laser in the limit K1 - «=,) Substitution

of Eq. (1) into Eq. (2) and introduction of nondimensional variables yields

: j+1
= -K,({-C_) dR .
g%’-z(-t)(uxl)/ e 1O a4, - t+RY (3)
(o] (o]

where { = xkcd/u is the ratio of streamwise distance x to the characteristic

collisional deactivation distance u/kcd‘ Further integration yields

¢ ) i1
1+ K, / e‘Ki‘c C,) ARy ¢ +1 - Rit
Kl o ¢ °

[o]

P-

¢
+/ Ri” dg_ - ¢ (4)
(o] '

As 7 increases, P increases, reaches a maximum, and then decreases.
The maximum value of P is denoted Pe and occurs at a station denoted Ce .
The quantity Pe represents the saturated laser output power, and ce is the
length of the lasing region. ¢, occurs ata station where dP/d{ = 0, or where

dP/d{ changes discontinuously from a positive to a negative value.

Equations (3) and (4) simplify in the limit Kl-ﬂb . Note that the major
contribution to the integrals occurs near { = Co' Evaluating the coefficient

-10-
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of e at {_ = { in these integrals, integrating, and taking the limit

K1-° ®, we obtain

- - arItl/ag - 1 + RiH! (5)

[« R TN
A%

and

i
"
'o\.
[ Y
G

j+1 i j+1
R} d¢ -C+1-R

These expressions can be evaluated when R is specified.

In the present study, we assume

R

t-e/ep ¢ <Cp (7a)

for both two-dimensional and axisymmetric nozzles. Here, N = 1/2, 1 for
laminar and turbulent diffusion, respectively, and ¢p is the value of { at

which the flame sheet reaches the nozzle centerline.

It is assumed here that, for given exit flow conditions, and a given
value of w, the value of ¢p is the same for both two-dimensional and axisym-
metric nozzles. For the two-dimensional nozzles, Eqs. (7) agree with the
flame sheet shape used previously in Ref. 4. For the axisymmetric nozzles,
the mixing is essentially two dimensional when C/CD <<{. Hence, the use of
Eqgs. (7) with the same value of CD for both two -dimensional and axisymmetric
nozzles is clearly valid when ce/CD <<1. As CICD increases, the rate at
which Hz diffuses into the F/He stream tends to be more rapid for the axi -
symmetric than for the two-dimensional nozzle because of transverse curva-

ture effects. This feature of the mixing process is not modeled here.

-11.-
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For simplicity, we obtain closed-form results for K
similar closed-form expressions can be obtained for finite values of Kl' In

order to display the dependence of the dependent variables on j and N, we

- *
introduce the notation Ce(j. N). Pe(j, N).
The quantity Ce(j, N) is found by setting Eq. (5) equal to zero or

observing the value of { at which dP/d{ changes discontinuously from a
This procedure yields

positive to a negative value.
Ce(O,N) = N CD>N (8a)
*Cp §D<N (8b)
it 1/2) =/t - e P - g )] (8c)
1/27)%
= Cp it - C[2 - (6, /6p) ]‘ (84)
(8e)

G = 1+ gy - 1+ B)2

Equations (8c) and (8d) are solved by iteration, with (8c) used for CD >1/2

and (8d) for ¢p < 1/2. Initial estimates are Ce - 1/2 in Eq. (8c) and (= C

in Eq. (8d).

to stations where dP/d{ = 0 and Ce/CD< 1. For these cases, lasing termi-
Equation (8b)

Except for Eq. (8b), the above expressions correspond
nates before the flame sheet reaches the nozzle centerline.

*In Ref. 4, the quantity I3e(j, N) is denoted by the symbol 1T and is a measure

of chemical efficiency.
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corresponds to the case in which lasing is terminated by the arrival of the
flame sheet at the nozzle centerline. The corresponding laser output

power is

—_ N
Pe(O.N) = (N/CD) /(N + 1) CD>N (9a)
=1 - ;D/(N +1) Cp< N (9b)
N
raoo e st ) [ o
Pe“'N"‘Z(‘EB -wvi\y) ' =m+T (9¢)

For given values of CD and N, Eq. (9¢c) can be evaluated by substituting the
value of Ce obtained from Eqs. (8c), (8d), or (8e). In the limit cl; >> 1,
Eqgs. (8) and (9) indicate

N 4N-1
- Y LN N
Ce(l,N)-N[l ?-(CD) +O(CD> ] (10a)

N 2 N 2N
- 2 N (N + 1) (N N
P LN) = 577 (CD) [' ’2(2N+1)(CD) +O(CD) ] (10b)

These equations provide, explicitly, the dependence of ce(I, N) and f’e(l. N)

on {n for ¢p large.

Equations (8) and (9) have been evaluated numerically and the results
are presented in Table 1. The variation of I_-’e(j, 1/2) with CIl)/Z is indicated
in Fig. 3. The quantity I-De(o. N)/‘P’e(l. N) in Table 1 can be interpreted as
the ratio of two-dimensional to axisymmetric nozzle output power for cases
where both nozzles have the same exit flow conditions and the same semi-

width w. For small values of Cg, both nozzles have the same output power.
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In these cases, the diffusion is fast, relative to the deactivation, and the
performance is similar to that for a premixed laser. For Cg large, the two-
dimensional nozzle has one-half the output power of the axisymmetric nozzle
because only the small portion of the F/He stream in direct contact with the

(R

bounding HZ stream lases. Since the '"'wetted perimeter' is twice as large for
the axisymmetric as for the two-dimensional nozzle, the output power from
the former is twice as great as that from the latter, The output power, how-
ever, is relatively low in this region, The ratio of two-dimensional to
axisymmetric output power is slightly larger than { for values of Cg between
0.1 and 1,0, This is probably because the same flame sheet shape was
assumed for corresponding axisymmetric and two-dimensional flows, In
reality, the axisymmetric diffusion rate is faster than the¢ two-dimensional
diffusion rate, which should cause the ratio of two-dimensional to axisym-
metric output power to be <1 for all Cg. Both the two-dimensional and the
axisymmetric nozzles have similar performance in the region 0,1 = Cg <1,0,
and a more accurate description of the diffusion process appears unwarranted,

particularly for laminar diffusion, which is the case of primary interest,

-16-




I1II. CONCLUDING REMARKS

Approximate expressions for Cg are given by Eqs. (44) of Ref. 4. For

a HF laser with laminar flow and a helium diluent

1/2 _ 5 5, P(Torr) wicm) [3 (400)"385] (t1a)

¢
D orpp )t/ (AT

where p is the static pressure, and Pp is the partial pressure of the fluorine
at the nozzle exit. Equation (11a) neglects the effect of combustion-generated

deactivators. For typical flow conditions (p/pHF =10, T = 400 K, A = 2)

CID/Z = p(Torr) w(cm) (11b)

For this flow condition, a saturated laser, K

1
ch/Z > 5, the axisymumetric nozzle has an output power twice that of a two-

-~ o, and pw > Torr cm, i.e.,

dimensional nozzle with the same exit flow conditions and exit width w. In
this pw regime, however, the chemical efficiency of the axisymmetric
nozzle is 20% or less that of a premixed (pw = 0) lager. For pw = 1 Torr cm,
t.e., ng = 1, the axisymmetric nozzle has about 30% greater output than
the corresponding two-dimensional nozzle and a chemical efficiency equal to
about 60% that of a premixed laser. For pw< 0.5 Torr cm, i.e., cng < 0.5,
both nozzles have essentially premixed laser performance. For either
nossle, a reduction in pw results in improved performance (Fig. 3). The
effect of p/PF 110 is found from Eq. (11a).

Fabrication and nozzle wall boundary layer effects also have to be

considered when comparing two-dimensional and axisymmetric nozzles.

These are beyond the scope of this study.
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NOMENCLATURE
B gle
[F]0 initial atomic fluorine concentration, moles/cc
g local gain, o[nu - nl]
1 net local intensity
3 0, 1 for two-dimensional and axisymmetric nozzles, respectively,
K1 kf/kcd
d collisional deactivation rate (sec-l)

kf forward pumping rate (sec-l)
N 1/2, 1 for laminar and turbulent mixing, respectively
P output power up to station x, Eq. (2a)
P normalized output power up to station x, Eq. (2b)
ﬁe(j,N) normalized net laser output power

static pressure at nozzle exit

,Ro rf(x)/w, rf(xo)/w
r radial ordinate, Fig, 2
rf(x) flame sheet location, Fig, 2
u streamwise velocity
w nozzle exit semiwidth, Fig, 1
X, X, streamwise distance, Fig, 2
Xp characteristic diffusion distance, Fig. 2
. < energy per mole of photons

4 normalized streamwise distance, xkcd/u

e ——

Tttt
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¢ N

normalized diffusion distance, Xp kcd/u

Ju

normalized length of lasing region, x, kcd

. . . A
cross section for stimulated emission, cm /mode
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